Skip to main content

Knowledge of Nitrogen Transfer Between Plants And Beneficial Fungi Expands




Knowledge Of Nitrogen Transfer Between Plants And Beneficial Fungi Expands

Date:              June 23, 2005, Science Daily

Source::          USDA / Agricultural Research Service

Summary:        New findings show that a beneficial soil fungus plays a large role in nitrogen uptake and                         utilization in most plants.

 


A microscopic view of an arbuscular mycorrhizal fungus growing on a corn root. The round bodies are spores, and the threadlike filaments are hyphae. The substance coating them is glomalin, revealed by a green dye tagged to an antibody against glomalin.
Credit: Photo by Sara Wright

New findings show that a beneficial soil fungus plays a large role in nitrogen uptake and utilization in most plants.

In a recent issue of the journal Nature, Agricultural Research Service (ARS) chemist Philip E. Pfeffer and cooperators report that beneficial arbuscular mycorrhizal (AM) fungi transfer substantial amounts of nitrogen to their plant hosts. A lack of soil nitrogen often limits plant growth.

The studies were conducted by Pfeffer and David Douds at the ARS Eastern Regional Research Center, Wyndmoor, Pa.; Michigan State University scientists headed by Yair Shachar-Hill; and New Mexico State University scientists headed by Peter J. Lammers and including graduate student Manjula Govindarajulu.

AM is the most common type of symbiotic fungus that colonizes the roots of most crop plants. The fungi receive glucose and possibly other organic materials from the plant, while enhancing the plant's ability to take up mineral nutrients, primarily phosphorus.

The scientists previously identified enzymes and genes involved in nitrogen absorption and breakdown in AM fungi, but very little was known about how nitrogen is moved from fungus to plant or in which form nitrogen moves within the fungus. The researchers discovered a novel metabolic pathway in which inorganic nitrogen is taken up by the fungi and incorporated into an amino acid called arginine. This amino acid remains in the fungus until it is broken down and transferred to the plant.

The results show that the symbiotic relationship between mycorrhizal fungi and plants may have a much more significant role in the worldwide nitrogen cycle than previously believed. With this in mind, farmers may benefit from promoting the proliferation of mycorrhizal fungi through diminished fertilizer input, thereby making more efficient use of the nitrogen stores in agricultural soils.

ARS is the U.S. Department of Agriculture's chief scientific research agency.


Story Source:

The above story is based on materials provided by USDA / Agricultural Research Service. Note: Materials may be edited for content and length.

Click This Link To View the original story in Science Daily:   http://www.sciencedaily.com/releases/2005/06/050619193216.htm



Comments

Popular posts from this blog

Understanding the Importance of Cation Exchange Capacity

I was recently asked to provide a simplified explanation on the importance of Cation Exchange Capacity (CEC) values. My Response:  CEC is the ability of a soil to hold onto plant nutrients.   The finer the particle size the higher CEC value, generally speaking. For example sand particles are course and visible to the naked eye, where as clay particles are fine and are not visible to the naked eye. So clay will have a higher CEC value than sand. It is obvious to most of us that sand cannot hold onto water or nutrients as well as a soil with a finer texture. Therefore, soils rich in Clay and Loam size particles are universally recognized as being better for farming - CEC explains this.  The numerical value for CEC represents how much nutrition can be held by a given amount of soil. For example one pound of a clay loam soil with a CEC value of 20 will hold 4 times as many nutrients as a sandy soil with a CEC value of 5. 20/4 = 5 .  It's all about math, for example Nitrogen in

Growing Pecan Trees in Western Alkaline Soil

It's common to see nutrient and water inhibition compromise the production of pecans in the arid western states, particularly where the soils are high pH, which can tie up nutrients such as zinc, iron, phosphorus and more. Keeping soils moist is also a problem because the regions were we grow pecan are not wet bottomland soils where pecan is native, but are high and dry desert soils where irrigation is essential. If the irrigation water is high in dissolved solids, the problem is made worse. There are many good things Soil Secrets can offer pecan growers that can overcome these obstacles, by improving the moisture management of the soil, improving nutrient solutioning and availability of both the native minerals as well as the purchased minerals, and improving the porosity of the soil so that water and oxygen can penetrate meters deep without the need to subsoil with machinery. How's this done? By using the power of Nature's own bio-chemical called the Carbon Matrix. Starti

Food Nutrient Density and Why our BIOpack is so important

Can you  tell the difference?  The first image shows a field that was not sprayed with your Consortium Soil Probiotic called BIOpack.  The second image field was sprayed.  Look at the difference in color and the overall biomass increase   the treated field.    BIOpack is ATCC Certified (American Type Culture Collection) and  USDA  Biobased Certified.  All 20 species included in the BIOpack are exact species that will perform a known Mode of Action which will provide a specific benefit to the crop you are growing.   For example if your lawn, trees, or crop are not getting enough iron pulled out of the soil to satisfy the needs of the crop or plant, than BIOpack can fix that problem by provided a microbe for that particular nutrient.   Bottomline is that BIOpack will improve the Nutrient Density of any crop you grow as it improves the solutioning of the mineral element in the soil from a normally not water soluble into a water solution so the plant can drink it.   This is important