Skip to main content

Conserving Water in Agriculture and in Urban Horticulture; The Past



Conserving Water in Agriculture and in Urban Horticulture;
The Past
by Michael Martin Meléndrez

In recent years I've written about techniques that could play a vital role in helping us conserve water in urban horticulture and in agriculture, particularly since the Southwest and the Western States are so dependent upon irrigation to grow crops, parks, sports fields and home landscapes.  Water is an issue that's growing and will not ever go away in our life time, so we better be on the learning curve of how to deal with it.

Soil Secrets has gotten better and better at what it does as a Soil Ecology company, with our Material Science and product line-up performing at a cutting edge pace.  For example, what we were doing 20 years ago was pretty fantastic and got the attention of many new clients and industry leaders, however compared to what we can do today, it was pretty crude stuff.  And compared to what the typical retail nursery garden store sector is offering today, our materials are like comparing the Tesla Premium Electric car to the first Model T, particularly when it comes to rehabilitating the soils health and conserving water. 
    
The Past:
Historically our industry has tried to fix soil by adding gobs of organic matter in the form of compost, peat moss, worm castings, mushroom compost or aged steer manure, in the hope that we could create a top soil out of poor dirt.  The results were sketchy at best and the soil structure may actually be damaged because of the high salt index of some of these materials, i.e. the steer manure and the mushroom compost.  In New Mexico, even compost can cause soil structure problems as there are few good sources of compost being sold that are not rich in excessive salts with the added problem of high pH chemistry.  The problem is the source/ingredients used to make the compost are not dependable or consistent and often times salt rich manures are used.  There is composting methodology described by David Johnson, PhD in molecular biology from New Mexico State University, Institute for the Energy and the Environment, where compost made with dairy manure can be remediated to not be problematic with salt, however his technique is novel and not being used by the commercial composters thus far.       
So all the nurseries push adding compost and other soil amendment products in the attempt to fix soil, regardless of the efficacy of the practice.  I even heard a PhD Extension Agent from Colorado say you cannot add too much compost while building the soil of your new home.  However he's very wrong on that point. 

       On the surface the technique sounds good and logical since we know that our poor desert soil did not look or behave like a rich top soil.  It was not capable of storing water, providing slow release moisture to the vegetation.  It was not capable of keeping the trace elements constantly available for plant use and it just didn't look like a rich dark top soil.  Without water being constantly available the mineral trace element nutrients cannot be held in a 'nutrient water solution' for most of the growing season, something necessary for proper plant nutrient uptake.  The problem of watering (irrigation) followed by a drying out period resulted in this sequence of events.  We water and for a period of time the soil could be too wet making it anaerobic (without oxygen), which causes the toxic build up of root poisons like lactic acid and alcohol.  The soil then begins to dry out and for a brief period of time there's just enough moisture to maintain the 'nutrient water solution' until the soil gets too dry.  During the excessive dry phase, vegetation has trouble conducting photosynthesis because water and mineral nutrient uptake are needed for that process to work.    Without photosynthesis glucose production stops and the transference of the liquid carbon (glucose) to the rhizosphere (figure 1) biomass of microbes is inhibited.  


Figure 1. Shows black humic molecular compounds with microbes and soil sticking to the roots                                 rhizosphere

Not good for those beneficial microbes!  The rhizosphere is the narrow region of soil that is directly influenced by root secretions also called root exudates which is the mono saccharide glucose needed by the soil's microbiology including the mycorrhizae.    It's this terrestrial biosphere of microbiology that builds the amazing molecules of supramolecular humic acids, the black stuff that makes a top soil dark in color.    The result of the soil being too wet, just wet enough and then followed by too dry is a feast-or-famine cycle, which is never good for plants.      


Then we have the obstacle of the soil chemistry pH being too high for many of us living west of the "lime line" center of North America's continent.   When the soil pH is high (alkaline) many of the trace elements such as iron and zinc, etc., are chemically occluded and not available for uptake.  In the case of alkaline soil with poor mutualistic microbiology "solutioning" of the indigenous trace elements is not taking place, therefore they are not easily available!   The commercial entities such as retail nursery's and agriculture farm fertilizer company's  traditionally suggested using acidifier products to try to force solutioning of the trace elements, but the process is not a permanent fix and may actually cause a multitude of other problems that are worse than the original problem.   Adding lots of organic matter was also popular, hoping that would  fix the problem, however in recent years Professional Soil Ecologists have come out of the wood work educating people that adding organic matter to soil is a bad idea as it increases the Biological Oxygen Demand of the soil causing it to go anaerobic, not a good thing.  Plus it doesn't do anything for instigating and perpetuating the bio-geo-chemical process of a healthy soil.  However there is a solution and its one farmers and urban horticulturists across America are starting to learn about.






Comments

Popular posts from this blog

Understanding the Importance of Cation Exchange Capacity

I was recently asked to provide a simplified explanation on the importance of Cation Exchange Capacity (CEC) values. My Response:  CEC is the ability of a soil to hold onto plant nutrients.   The finer the particle size the higher CEC value, generally speaking. For example sand particles are course and visible to the naked eye, where as clay particles are fine and are not visible to the naked eye. So clay will have a higher CEC value than sand. It is obvious to most of us that sand cannot hold onto water or nutrients as well as a soil with a finer texture. Therefore, soils rich in Clay and Loam size particles are universally recognized as being better for farming - CEC explains this.  The numerical value for CEC represents how much nutrition can be held by a given amount of soil. For example one pound of a clay loam soil with a CEC value of 20 will hold 4 times as many nutrients as a sandy soil with a CEC value of 5. 20/4 = 5 .  It's all about math, for example Nitrogen in

Food Nutrient Density and Why our BIOpack is so important

Can you  tell the difference?  The first image shows a field that was not sprayed with your Consortium Soil Probiotic called BIOpack.  The second image field was sprayed.  Look at the difference in color and the overall biomass increase   the treated field.    BIOpack is ATCC Certified (American Type Culture Collection) and  USDA  Biobased Certified.  All 20 species included in the BIOpack are exact species that will perform a known Mode of Action which will provide a specific benefit to the crop you are growing.   For example if your lawn, trees, or crop are not getting enough iron pulled out of the soil to satisfy the needs of the crop or plant, than BIOpack can fix that problem by provided a microbe for that particular nutrient.   Bottomline is that BIOpack will improve the Nutrient Density of any crop you grow as it improves the solutioning of the mineral element in the soil from a normally not water soluble into a water solution so the plant can drink it.   This is important

RESEARCH BY SOIL SECRETS

Michael Melendrez August 11 at 6:55 AM ·  There's a huge interest in using CBD oil/extracts and infused products containing CBD as medicine. Soil Secrets with the cooperation of a professional medical cannabis grower did a grow out experiment with spent/used soil compared to brand new Fox Farm Forest Floor soil. We cleaned the used soil using our Soil Secrets trommel screen and the treated the used soil with molecular biology made by Soil Secrets. Most growers throw away soil after one use so wanted to see if the used soil could be made good and repurposed for a second or third use. The image provided is from the starvation group where no fertilizer input had been provided to either the SS treated spent soil or the brand new Fox Farm soil. Both groups were treated with a Mycorrhizal product and bacteria. The Fox Farm was treated with the mycorrhizal product called Great White used per label instructions. Great White also contains a bacteria blend